KHRS 2023

Parahisian PVC: Mapping and Ablation of Premature Ventricular Complexes (PVC)

Chin-Yu Lin

Divisions of Cardiology Taipei Veterans General Hospital

Korean Heart Rhythm Society COI Disclosure

Chin-Yu Lin:

The authors have no financial conflicts of interest to disclose concerning the presentation

Disclosure

Relationships with commercial interests:

- Grants/Research Support: none
- Consulting Fees:none
- Other:none

Prevalence of idiopathic VA

Unusual Idiopathic VA targets

- LV summit VA
- GCV/AIV VA
- Epicardial VA
- Intramural VA
- Papillary muscle VA
- Moderator band VA
- Parahisian VA

Definition of Parahisian PVC

 We define parahisian VAs as those in which earliest activation, after complete mapping, including neighbor structures, is recorded in presence of a His potential or within 10 mm-distance from the His cloud

Catheter ablation

Parahisian area

JACC Clin Electrophysiol . 2019 Nov:5(11):1233-1252

ECG Algorism [for OT case]

J Cardiovasc Electrophysiol. 2003; **14**(1 2): 1280– 1286

A. Positive II and III: Suggests origin from the outflow tracts and top of atrioventricular valves

Positive lead I: Structures rightward from the midline a. Posterior RVOT LBBB, transition at or after V_3 , QS in V_1 b. RCC LBBB, V₂ or V₃ transition (V₂ transition ratio \geq 0.6), QS in V₁ LBBB, typically V_2 or V_3 transition, QS in V_1 , R in aVL (vs negative in the RVOT), II c. Para-Hisian may be negative, narrow QRS LBBB, variable transition, QS or rS in V_1 , positive aVL (vs negative in the RVOT), II d. Top of the TV may be negative Negative lead I: Structures leftward from the midline a. Anterior RVOT LBBB, transition at or after V_3 , QS in V_1 b. LCC LBBB or RBBB, V_1 or V_2 transition, rS, R, or multiphasic pattern in V_1 RBBB, positive concordance, qR in V_1 c. AMC RBBB, positive concordance, R or Rsr' in V_1 d. Anterolateral MV RBBB or LBBB with V₂ or V₃ transition, taller R wave in III than in II, pseudo-delt e. LV summit wave and/or MDI > 0.55, V₂ "pattern break" Exceptions are 2 non-outflow tract structures: a. Left anterior fascicle RBBB, rsR' in V_1 , narrow QRS, right axis b. Anterolateral PM RBBB, R, Rsr', or qR in V_1 , late R/S transition, II may be negative

Prediction of success

JACC Clin Electrophysiol . 2021 Jun;7(6):719-730

Induction of PVC/VT

- If no PVC present
 - Postpone the procedure
- If PVC after isuprel or spontaneously
 - -LAT
 - Pacemap

Mapping of para-his PVC

Front Cardiovasc Med . 2022 Mar 2;9:8 44320

Strategy for parahisian PVC

Creation of activation map from His and para-his area

- Map in detail all the neighbor structures before any attempt of delivering ablation
 - May found earlier potential rather than His area
 - It's relative safe to do ablation in adjacent site despite worse LAT signals

RV side

LAT map of parahisian area

LAO

NCC

Heart rhythm 2019; 16: 1538-1544

LV

NCC

RA

Posterior-superior process of the LV

Ablation

- Targets for RF delivery include earliest local bipolar activation preceding the QRS and the presence of a QS pattern in the unipolar electrogram of the ablation catheter, usually associated with good pacemap
- A distance > 5mm to largest HIS signals is acceptable
- If His signals presented in the target site
 - Start from adjacent RCC/NCC for 10 second
 - No effect → stop
 - Suppression → continue for 60 second
 - High current pacing to D/D far/near field signal

Energy setting

- Start from low power and increase gradually without AV node injury
- If the His signal was seen in the ABL catheter, consider to use cryoablation
- A angiography was required before RCC ablation.

Conclusions

- The location of parahisian PVC could be predicted from 12 lead ECG
- Systemic approach from RA/RV/Cusp/LV should be considered before applying the energy
- Detailed mapping of neighbor structures is essential
- Be careful about the junctional rhythm, PR prolong, and AV block during ablation
- Cryoablation is an alternative choice